Basic Math Formulas

 

            आज भारत में कोई भी ऐसी परीक्षा नही है, जिसमें Math से सम्बन्धित प्रशन नही पूछे जाते है, यदि आपका Math Formulas में पकड नही है, तो आपका परीक्षा में सफल होना बहुत ही मुश्किल है, आज के पेज पर हम Top Math Formulas लेकर आये है, जिन्हे आपके द्वारा अध्ययन किया जाता है, तो आपका सलेक्शन होने से कोई रूक नही सकता है, चलिए शुरू करते है, कृपया ध्यान से पढे।

Basic Math Formulas

Square Formula :-

  1. (a + b )2 =  a2 + b2 + 2ab  or (a – b )2 + 4ab
  2. (a – b )2 =  a2 + b2 – 2ab  or (a + b )2 – 4ab
  3. a2 + b2 = (a + b )2 – 2ab
  4. a2 + b2 = (a – b )2 + 2ab
  5. a2 – b2 = (a + b ) + ( a – b )
  6. (a + b )2 + ( a – b )2 =  2 (a2 + b2 )
  7. (a + b )2 + ( a – b )2 =  4ab
  8. ab =(a+b/2) 2  –  (a-b/2)2
  9. ( a2 – ab + b2 ) ( a2 + ab + b2 ) = a4 + a2b2 + b4
  10. (a + b + c )2 = a2 + b2 + c2 + 2 (ab + bc + ca )
  11. a2 + b2 + c2 = (a + b + c )2 – 2 (ab + bc + ca )
  12. 2 (ab + bc + ca ) = (a + b + c )2 – ( a2 + b2 + c2 )
  13. ( b + c ) ( c + a ) ( a + b ) + abc = (a + b + c ) (ab + bc + ca )
  14. a2 ( b – c ) + b2 ( c – a ) + c2 ( a – b ) = – (b – c) (c – a) (a – b)
  15. a ( b2 – c2 ) + b ( c2 – a2 ) + c ( a2 – b2 ) = (b – c) (c – a) (a – b)
  16. a3 ( b – c ) + b3 ( c – a ) + c3 ( a – b ) = – (b – c) (c – a) (a – b) ( a + b + c)          

Maths Tricks, Formulas

Top  Math Formulas

 

Cube Formula :-

  1. (a + b )3 =  a3 + b3 + 3ab (a – b ) or a3 + 3a2b +3ab2 +b3
  2. a3 + b3 = (a + b)3 – 3ab (a + b)
  3. a3 + b3 = (a + b ) ( a2 – ab + b2 )
  4. (a – b)3 = a3 – 3a2b + 3ab2 –b3 or a3 – b3 – 3ab (a – b )
  5. a3 – b3 = ( a – b )3 + 3ab (a – b)
  6. a3 – b3 = (a – b ) ( a2 + ab + b2 )
  7. a4 – b4 = (a2)2 – (b2)2 or (a2 + b2 ) (a2 – b2) or (a2 + b2 ) (a + b) (a – b)

Factor Formula :-

  1. (x + a) (x + b) = x2 + (a + b)x + ab
  2. (x – a) (x – b) = x2 – (a + b)x + ab
  3. a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)

Top Math Formulas

Important Maths Formulas

 

Special Case 1 : If a = b = c

                then a2 + b2 + c2 – ab – bc – ca = 0

thus a3 + b3 +c3 – 3abc = 0

Remember

                If a = b = c then a3 + b3 + c3 = 3abc

Basic Math Formulas

Special Case 2 : If a + b + c = 0 then

a3 – b3 – c3 – 3abc = 0

Remember

If a + b + c = 0 then a3 + b3 + c3 + 3abc

Special Case 3 : a3 + b3 + c3 – 3abc

                = 1/2( a + b + c) [(a – b)2 + (b – c)2 + (c – a)2 ]

What if two number are equal and third number is one more than the numbers than.

a3 + b3 + c3 + 3abc = a + b + c

Special Case 4 :

                 a2 + b2 + c2 – ab –bc – ca

= 1/2  [(a – b)2 + (b – c)2 + (c – a)2 ] = 3d2

Where a, b, c are in A.P and common difference is d.

Special Case 5 :

                a3 + b3 + c3 – 3abc

= 1/2 ( a + b + c) [(a – b)2 + (b – c)2 + (c – a)2 ] = 9bd2

                        Where a,b,c are in A.P. and common difference is d and middle term is b.

Quadratic Equation/ द्विद्यात समीकरण  :

  1. An equation of the form ax2 + bx + c = 0, is called quadratic equation.

कोई ax2 + bx + c = 0 प्रकार का समीकरण द्विद्यात समीकरण कहलाता है।

  1. Roots of the equation ax2 + bx + c = 0 are

समीकरण ax2 + bx + c = 0 के मूल

given by    α  = -b + b2 – 4ac /2a

and            β  = -b – b2 – 4ac /2a

  1. If and  are the roots of the equation ax2 + bx + c = 0

यदि  और   समीकरण ax2 + bx + c = 0 ds मूल हो तो –

All Math Formulas 

  • Sum of roots/ मूलों का योगफल

(α + β)  =  -b/a = -coefficient of x/ coefficient of x2

  • Product of roots/ मूलों का योगफल

(α . β)  =   = c/a = constant term / coefficient of x2

  1. If the roots and are known then the equation is given by x2 – (α + β) x + (α . β)  = 0

यदि मूल  α तथा β ज्ञात हों तो समीकरण

x2 –(α + β) x + (α . β) = 0 होगा ।

  1. Maximum and Minimum value of a quardratice equation/ द्धिघात समीकरण के अधिकतम तथा न्यूनतम मान

F (x) = ax2 + bx + c

F(x)min  =   4ac- b2 / 4a   When a < 0 ;

F(x)max  =    4ac- b2 / 4a    When a > 0

Sum of Series/ श्रेणी का योगफल :-

  1. Sum of first ‘n’ natural numbers

1 + 2 + 3 + ……………….. + n = n(n+1)/ 2

    प्रथम n प्राकृतिक संख्याओं

  1. Sum of the squares of first ‘n’ natural numbers.

प्रथम n प्राकृतिक संख्याओं के वर्गों का योगफल

12 + 22 + 32 + ……………….. + n2 = n(n+1) (2n + 1) /6

  1. Sum of the squares of ‘n’ natural numbers.

प्रथम n प्राकृतिक संख्याओं के वर्गों का योगफल

=  n(n+1) (n+2)/6

  1. Sum of the cubes of first ‘n’ natural numbers.

प्रथम n प्राकृतिक संख्याओं के घनों का योगफल

13 + 23 + 33 + ……………….. + n3 ={ n (n+1)/2} 2

  1. Sum of even integers/ सम पूर्णांकों का योगफल

2 + 4 + 6 ………………….. + 2n = n ( n + 1 )

  1. Sum of odd integers/ विषम पूर्णाकों का योगफल

1 + 3 + 5 + …………….. ( 2n – 1 ) = n2

 

Mathematical Formula Images

Division Algorithm/ विभाजन एल्गोरिथ्म:-

  1. Dividend/भाज्य= Divisor / भाजक x Quotient/ भागफल + Remember / शेषफल
  2. Divisor / भाजक = Dividend – Remainder / Quotient
  3. Remainder / शेषफल = Dividend/ भाज्य – (Divisor/ भाजक x Quotient / भागफल)

 

Surds and Indices / करणी और घातांक

Indices/ घातांक

= Power is greater than 1/ घात हमेशा 1 से अधिक होती है।

Surds/ करणी –

= Power is less than 1/ घात हमेंशा 1 से कम होती है।

Ex. 57/3  Hence 7 is indices and 1/3 is surds/ 57/3 में 7 घातांक हैं तथा 1/3 करणी है ।

Laws of Indices/ घात के नियम –

  1. am x an = am+n
  2. am + an = am-n
  3. (am)n = amn
  4. (ab)n = anbn
  5.  1/an =  a-n                        
  6. ( a/b )n =an / bn = an ÷ bn
  7. a-n / b-m = bm / an
  8. am/n = n√am
  9. a0 = 1 ( a ≠ 0 )
  10. a1 = a
  11. ap/q = (ap)1/q
  12. ax = ay          x = y
  13. ax = by           a = b

Irrational equation / अपरिमेय समीकरण –

       There are two type of question

इसमें दो प्रकार के प्रश्नों होते हैं

  1. a + √b  = 3 + 2√5

then convert both side in same manner and the compare

दोनों पक्षों को एक समान करने और फिर तुलना करें।

a + √b  = 3  + √20                  a = 3 and b = 20

  1. If there are different irrational terms

यदि अपरिमेय पद भिन्न हो तो

a√5  + b√3 + c√2 + d = 3√5 – 7√2 + 5

Compare LHS and RHS,

a = 3, b = 0, c = -7, d = 5

 

Math formulas for class 10

Arithmetic & Geometric Progresion [ समांतर और गुणोत्तर श्रेणी ] –

Sequence/ अनुक्रम = a + (a + d) + (a + 2d) + ………………….

Where a be the first term and d is the common difference of the sequence of an A.P., then-

जहां किसी समान्तर श्रेणी के अनुक्रम का a प्रथम पद तथा क सार्वन्तर है तो

  1. nth term of an A.P.

समांतर श्रेणी का n वां पद

tn = a + (n – 1)d

  1. The sum of the first n terms of an A.P.

समांतर श्रेणी प्रथम n पदों का योगफल

Sn = n/2 [2a + (n-1)d]

  1. Three consecutive terms/तीन क्रमागत पद

= a – d, a, a + d

  1. Four consecutive terms/ चार क्रमागत पद

= a – 3d, a – d, a + d, a + 3d

Math equations

Geometric Progresion/ गुणोत्तर श्रेणी

                Sequence/ अनुक्रम = a + ar + ar2 + ……………….

                Where a be the first term and r is the common ration of the sequence of a G.P. then.

              जहां किसी गुणोत्तर श्रेणी के अनुक्रम का a प्रथम पद तथा सार्वानुपात r  है तो

  • nth term of a G.P.

गुणोत्तर श्रेणी का n वां in an = ar(n-1)

  • The sum of the first n terms of a G.P.

गुणोत्तर श्रेणी प्रथम n पदों का योगफल

Sn = a(1- rn)/ 1- r    ; r ≠ 1 and    r < 1

Sn = a(rn -1)/ r-1    ; r ≠ 1 and    r > 1

If the common ratio is equal to 1, then the sum of the first n term of the GP is given by / यदि सार्वानुपात एक के बराबर हो तो गुणोत्तर श्रेणी के प्रथम n पदों का योगफल Sn = na

  • Three consecutive terms/ तीन क्रमागत पद

= a, ar, ar2 or  , a/r, ar

  • Four consecutive terms/ चार क्रमागत पद

= a, ar, ar2 , ar3 or  a/r2 ,a/r , a, ar2

Gk Questions In Hindi    haryana gk 1500 questions  Top 100+ Gk Questions In Hindi |   Lucent Gk  bihar gkGK in Hindi        Best 1000+ Computer gk in hindi  science gk question in